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Abstract

he numerical solutions of linear Volterra-type integro-differential equations (VIDEs) have been 

Tconsidered in this paper. We propose using the third kind of Chebyshev polynomial as the basis 

function to approximate the solution of the problems using  software. Standard MAPLE 2018

collocation points were chosen to collocate the approximate solution, and numerical experiments were 

performed on some sample problems already solved by the finite difference method and the method of power 

series as a basis polynomial, utilizing both the standard and Chebyshev-Gauss-Lobbatto collocation points. 

Furthermore, we compared our results to some previously published findings. Our proposed method yields 

superior approximate solutions and exhibits significantly lower absolute errors compared to the existing 

method. Furthermore, the absolute errors obtained are exceptionally minimal, indicating both convergence 

and computational efficiency.

Keywords: Chebyshev polynomial, Collocation, Approximate solution and Volterra Integro-differential 

equation
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INTRODUCTION

This paper considers the collocation method for VIDEs, there has been extended research in recent 
years on integral and integro-differential equations for physical systems with memory effects in 
which stability and asymptotic stability have been the main interest. These numerical analyst aims to 
produce an efficient and effective method for obtaining a numerical solution to problems that prove 
difficult in getting their solution in a closed-form. There exist numerous numerical techniques to 
solve Integro-differential equation such as Wavelet-Galerkin Method (WGM) by (Avudainayan & 
Vani 2000), Homotopy Analysis Method (HAM) by (Kunjan Shah & Twinkle Singh, 2015). 

Furthermore, the application of the Taylor, Chebyshev, Hermite, Legendre, and Laguerre 
polynomials and their numerical merits in solving integral and integro- differential equations (IDEs) 
numerically have been discussed in (Akyuz & Sezer, 2003), (Maleknejad & Mahmoudi, 2003), 
(Taiwo, O. A., Alim, A. T. & Akanmu, M. A., 2014), and (Richard & Roderick, 2010). Furthermore,  
many techniques such as a new  algorithm for calculating Adomian polynomials, (Hashim, 2006), 
Chebyshev polynomials by (Eslahchi, M. R., Mehdi, D., Ayinde et al., 2021 & Sanaz, A., 2012), 
Chebyshev and Legendre by (Abubakar & Taiwo, 2014), Homotopy Perturbation Method (HPM), 
(Wazwaz, 2011) and, Variation Iteration Decomposition Method (VIDM) by (Ignatius   & Mamadu, 
2016). Application of Adomian's decomposition method on Integro- differential equation also 
examined by (Wazwaz, 2001) and others have been used to derive solutions of some classes of 
integro- differential equations. The great work did by the researchers aforementioned motivated us 
to develop a numerical approximation method that is efficient and accurate with less computational 
work to obtain an approximate solution for LVIDEs.

2. Basic Definitions

Definiion 2.1

An integro-differential equation is an equation in which the unknown function g(x) appears under 
(s) the integral sign and contains an ordinary derivative g  as well. A standard integro-differential 

equation is of the form;

(1)

where α(x) and β(x) are the limits of integration which may be constants, variables, or combined. λ is 

a constant parameter, f(x) is a given function and K (x, s) is a known function of two variables x and s 

called the kernel.

Definition 2.2

Volterra integro-differential equations (Wazwaz 2015)

 � Volterra integro-differential equations of the form:

(2)
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th (m) where g indicate the m derivative of  g (x), K (x. s,), and function f(x) are given real-valued 

functions and λ is a constant parameter.

Definition 2.3

Chebyshev Polynomials:

The Chebyshev polynomial denoted by T (x) and valid in the interval a ≤ x ≤ bn

is defined as 

  
(3)

and the recurrence relation is given as

(4)

Definition 2.4
 Chebyshev polynomials of third kind (Ayinde et al., 2022)

The Chebyshev polynomial of the third kind in [-1, 1] of degree m is represented by T (x) n

where:

(5)

This elegance of Chebyshev polynomials satisfied the subsequent recurrence relation given by

(6)

The Chebyshev polynomial of the third kind in [ a, b] of degree, m is represented by T (x)n

(7)

Definition  2.5

Approximate solution: (Ayinde et al. 2021)

Approximate solution is an inexact representation of the exact solution that is still close enough to 

be used instead of exact and it is denoted by   (x), where � is the degree of the approximant used 

in the calculation. Methods of the approximate solution are usually adopted because complete 

information needed to arrive at the exact solution may not be given. In this work, the approximate 

solution used is given as 

(8)

where Ci = 0, 1, 2, …,M are unknown constants to be determined,                         are the third kind of 
Chebyshev polynomials described in equations (5-7) and � is the degree of approximating 
polynomials.

 (i ≥ 0)
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Definition 2.6 

Exact Solution (Ayinde et al., 2022)

A solution is called an exact solution if it can be expressed in a closed form, such as a polynomial, 

exponential function, trigonometric function, or the combination of two or more of these elementary 

functions.

3. Methodology

 The general problem considered is of the form

+   (9)

subject to boundary conditions.

 = A,   = B    (10)

where h(x) and i(x) are the limits of integration which may be constants, variables or combined, λ 

is a constants parameter, f(x) is a given function, and K (x, s) is called kernel.

In order to solve equations (9) and (10) using the standard method, we assumed an approximate 

solution of the form

  (11)

where N is the degree of our approximant, ai,  are the unknown constants to be determined and 

Ti, (X)  are the third kind Chebyshev polynomials defined in equation above
Thus, differentiating equation (11) n times, we obtain

  (12)

Hence substituting (12) into equation (9) to obtain

Evaluating the integrals, we obtain
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where 

Thus, collocation at point X = Xk, we obtain

where�  ;  k = 1, 2, . . ., N – 1.

(15)

Equation (15) gives rise to (N - 1) algebraic linear equation in (N + 1) unknown constants. Two extra 

equations are obtained from the conditions in equation (10). Altogether, we now have (N + 1) 

algebraic equations in (N + 1) unknown constants. These equations are then solved using Maple 2018 

software to obtain the (N + 1) unknown constants               which are then substituted back into the 

approximate solution given by equation (11).

4. Results
In this section, standard points have been employed to solve sample problems. The numerical 
solutions obtained using the present method had been compared with the exact solutions of the 
sample problems. Similarly, absolute errors of results from this present method have been compared 
with those obtained in Behrouz  (2010) by finite difference method (FDM) and the use of power 
series as basis polynomial utilizing both the standard and Chebyshev-Gauss-Lobbatto collocation 
points for the same problems by Agbolade and Anake (2017). In the tables the following notations 
were used.

SCM : Solution via standard collocation using Power series as basis polynomial.1

SCM : Solution via standard collocation using third kind Chebyshev polynomial as basis 2

polynomial, which is the proposed method in this paper.

CGLCM: Solution via Chebyshev-Gauss-Lobatto collocation Method using third kind Power series 
basis polynomial.

Numerical Example 1

Consider the Linear Volterra linear integro-differential equation (Agbolade and Anake, 2017)

 (12)
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subject to initial condition

         y (0) = 10 

The exact solution is given as 

 (13)

 (14)

 

Table 1.1  Comparison of exact solutions with approximate solutions for 
Numerical Example 1

 

xi

 

Exact
 

SCM2

 

0.0000

 

10.00000000

 

10.000000000

 

0.0714

 

9.933520218

 

9.933520218

 

0.1429

 

9.876128457

 

9.876128457

 

0.2143

 

9.827037138

 

9.827037139

 

0.2857

 

9.785299870

 

9.785299871

 

0.3571

 

9.750136229

 

9.750136229

 

0.4286

 

9.720801197

 

9.720801197

 

0.5000

 

9.696734670

 

9.696734670

 

0.5714

 

9.677310846

 

9.677310846

 

0.6429

 

9.661985366

 

9.661985366

 

0.7143

 

9.650325388

 

9.650325389

 

0.7857

 

9.641877524

 

9.641877522

 

0.8571

 

9.636254445

 

9.636254445

 

0.9286

 

9.633104130

 

9.633104128

 

1.0000

 

9.632120559

 

9.632120559
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Table 1.2 Absolute Errors for Numerical Example 1

xi

 

Error in SCM1 Error in CGLCM

(Agbolade & Anake 

(2017))

 Error in FDM

(Behrouz

 

(2010))

 Error in SCM2

0.0000

 

0.0000000000

 

0.0000000000

 

0.0000000000

 

0.0000000000

0.0714

 

1.72431

 

–

 

06

 

5.91262

 

–

 

06

 

2.85397

 

–

 

04

 

0.0000000000

0.1429

 

1.92637

 

–

 

06

 

2.31105

 

–

 

05

 

2.98284

 

–

 

04

 

0.0000000000

0.2143

 

1.77825

 

–

 

06

 

4.91013

 

–

 

05

 

5.43393

 

–

 

04

 

1.0E-09

0.2857

 

1.63695

 

–

 

06

 

7.92123

 

–

 

05

 

5.11413

 

–

 

04

 

1.0E-09

0.3571

 

1.51288

 

–

 

06

 

1.06967

 

–

 

04

 

7.15638

 

–

 

04

 

0.0000000000

0.4286

 

1.34028

 

–

 

06

 

1.24865

 

–

 

04

 

6.54200

 

–

 

04

 

0.0000000000

0.5000

 

1.09939

 

–

 

06

 

1.25617

 

–

 

04

 

8.18261

 

–

 

04

 

0.0000000000

0.5714

 

8.36590

 

–

 

07

 

1.03879

 

–

 

04

 

7.38321

 

–

 

04

 

0.0000000000

0.6429

 

6.24770

 

–

 

07

 

5.85256

 

–

 

05

 

8.64022

 

–

 

04

 

0.0000000000

0.7143

 
5.03018

 
–

 
07

 
4.48751

 
–

 
06

 
7.73248

 
–

 
04

 
1.0E-09

0.7857
 

4.31615
 

–
 

07
 

6.86526
 

–
 

05
 

8.63249
 

–
 

04
 

2.0E-09

0.8571
 

2.95402
 

–
 

07
 

1.02783
 

–
 

04
 

7.66939
 

–
 

04
 

0.0000000000

0.9286
 

1.39661
 

–
 

08
 

5.62088
 

–
 

05
 

8.24573
 

–
 

04
 2.0E-09

1.0000  4.08829  –  07  1.46741  –  04  7.26353  –  04  0.0000000000

 
Numerical Example 2

Consider the Linear Volterra linear integro-differential equation (Agbolade and Anake, 2017)

�(15) 

subject to initial condition

EEE

EEE

EEE

EEE

EEE

EEE

EEE

EEE

EEE

EEE

EEE

EEE

EEE

EEE
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y(0) = 1 ( 16)

The exact solution is given as ( 17)

 Table 1.3 Comparison of exact solutions with approximate solutions
for Numerical Example 2 

xi  Exact  S SCM2
 

0.0000  1.0000000000  0.9999862060 

0.0833
 

0.9232690798
 

0.9232552092
 

0.1667
 

0.8582417719
 

0.8582278950
 

0.2500
 

0.8032653300
 

0.8032515254
 

0.3333
 

0.7567256737
 

0.7567120165
 

0.4167

 

0.7172846180

 

0.7172711789

 

0.5000

 

0.6839397204

 

0.6839265676

 

0.5833

 

0.6557119923

 

0.6556991912

 

0.6667

 

0.6317897828

 

0.6317773951

 

0.7500

 

0.6115650802

 

0.6115531624

 

0.8333

 

0.5944440975

 

0.5944326997

 

0.9167

 

0.5799345438

 

0.5799237081

 

1.0000

 

0.5676676417

 

0.5676573973
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Table 1.4. Absolute Errors for Numerical Example 2

xi Error in SCM1

(Agbolade & 

Anake, 2017)

 Error in CGLCM Error in FDM Error in SCM2

0.0000

 

0.0000

 

0.0000

 

0.0000

 

1.37940 − 05

0.0833

 

9.76008

 

–

 

06

 

4.61438

 

–

 

05

 

1.77203

 

− 02

 

1.38706 − 05

0.1667

 

9.82124

 

–

 

06

 

7.55931

 

–

 

05

 

2.16887

 

− 03

 

1.38769 − 05

0.2500

 

8.43856

 

–

 

06

 

7.54254

 

–

 

05

 

1.89273

 

− 03

 

1.38046 − 05

0.3333

 

7.74622

 

–

 

06

 

4.08918

 

–

 

05

 

4.52374

 

− 03

 

1.36572 − 05

0.4167

 

7.56304

 
–

 
06

 
2.06182

 
–

 
05

 
2.06181

 
− 02

 

1.34391 − 05

0.5000
 
7.32270

 
–

 
06

 
8.83487

 
–

 
05

 
7.13624

 
− 03

 
1. 31528 − 05

0.5833
 
6.79994

 
–

 
06

 
1.31400

 
–

 
05

 
1.10585

 
− 02

 
1.28011 − 05

0.6667  6.15006  –  06  1.18269  –  05  8.20866  − 03  1.23877 − 05

0.7500
 
5.64809

 
–

 
06

 
3.47095

 
–

 
05

 
3.41335

 
− 03

 
1.19178 − 05

0.8333
 
5.40361

 
–

 
06

 
8.79889

 
–

 
05

 
8.16328

 
− 03

 
1.13978 − 05

0.9167
 
5.23390

 
–

 
06

 
1.32084

 
–

 
05

 
2.89396

 
− 03

 
1.08357 − 05

1.0000  4.79838  –  06  1.62442  –  05  3.27168  − 03  1.02444 − 05

 

Discussion and Conclusion 

Tables 1.1 and 1.3 display the numerical solutions obtained using the Volterra Integro-Differential 

Equations (VIDEs) solved with the basis function of third-kind Chebyshev polynomials. Comparing 

the absolute errors of the results obtained by the present method (SCM ) with those obtained by the 2

finite difference method for the same problems, it is evident that the method is both efficient and cost-

effective for obtaining numerical solutions of first-order Volterra-type integro-differential 

equations. These findings are illustrated in Tables 1.2 and 1.4. Furthermore, the third-kind 

Chebyshev basis polynomial serves as an excellent approximation for these problems, producing 

results that compete favorably with existing methods.
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